I have seen a few posts talking about getting more distance out of UHF gear, such as the GMRS equipment we use. It looks like the common theme is, many immediately want to go for more power, assuming they can brute-force their way through issues. I am hoping myself and some of the other people who have some training and practical experience can use this thread to help new users understand how to make life better without more power.
I want to start with handheld transceivers. HT antennas use your body as a counterpoise. Depending on how you are dressed, how tall you are, how you are holding the radio, the radio position, the distance of the radio from your body, what direction you are facing, all impact performance. Even how much fat, salt and water your body is retaining at the moment impacts how an HT antenna works, because those things vary the conductivity of the human body. In all seriousness, forget about more power... or even more range from a typical HT.
If you want more range out of your HT, your best bet is to find higher ground, figure out where the best place to stand is, and what general direction to be facing when compared to the receiving station provides the best communications path.
Mobile antennas are often several wavelengths+ in overall height and the body of the vehicle is typically a much better reflective counterpoise. There is a lot that can be done in the mobile and base antenna world that can help, but for now, lets continue to focus on why 'more power' likely isn't the right answer.
There is a standard in radio communications about intelligibility of radio communications. It is called the 5/9 scale. 0 to 5 for voice clarity and 0 to 9+ for signal strength in s-units. It is said that while a 2/1 signal provides partially usable comms, the lowest "reliable" communications happens at a 3/2 (or 32) and the best is a 5/9+ (often called 599, 59+20, 59+40).
With that in mind, you have to quadruple your power to impact a receiver 1 s-unit. So, if the other party is receiving a signal at 1/2 s-unit while you are using 4 watts, you need 16 watts to go to 1 s-unit. You then need to jump to 64 watts for 2 s-units. Finally a third jump in power of 256 watts to get to 3 s-units and possibly getting a reliable communications signal (a 2/3 or 3/3). Depending on the modulation of the carrier signal and bandwidth, you may need to jump to 4 s-units, requiring well over 1,000 watts.
Now, lets say the same receive condition exists, but now you are already using 20 watts for that 1/2 s-unit. Now your power jumps are 80 watts, 320 watts, 1,280 watts for 3 s-units and possibly needing 5,120 watts for 4 s-units. Well, the first bump you made already seriously violates power restrictions in GMRS.
AND, this is under hypothetical perfect conditions, assuming nothing else changed in the environment. Which almost never exists.
Chasing better performance by boosting power typically doesn't give you any truly desirable results. The top 3 items that will help improve comms in almost every band is elevation, elevation, and elevation. From there its antenna tuning (and beams) filters to reduce interference and lowering the noise floor, as some examples.
So, for our technically skill folks... Would anyone like to contribute some general advice for new users to benefit from?
You can post now and register later.
If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.
Question
marcspaz
I have seen a few posts talking about getting more distance out of UHF gear, such as the GMRS equipment we use. It looks like the common theme is, many immediately want to go for more power, assuming they can brute-force their way through issues. I am hoping myself and some of the other people who have some training and practical experience can use this thread to help new users understand how to make life better without more power.
I want to start with handheld transceivers. HT antennas use your body as a counterpoise. Depending on how you are dressed, how tall you are, how you are holding the radio, the radio position, the distance of the radio from your body, what direction you are facing, all impact performance. Even how much fat, salt and water your body is retaining at the moment impacts how an HT antenna works, because those things vary the conductivity of the human body. In all seriousness, forget about more power... or even more range from a typical HT.
If you want more range out of your HT, your best bet is to find higher ground, figure out where the best place to stand is, and what general direction to be facing when compared to the receiving station provides the best communications path.
Mobile antennas are often several wavelengths+ in overall height and the body of the vehicle is typically a much better reflective counterpoise. There is a lot that can be done in the mobile and base antenna world that can help, but for now, lets continue to focus on why 'more power' likely isn't the right answer.
There is a standard in radio communications about intelligibility of radio communications. It is called the 5/9 scale. 0 to 5 for voice clarity and 0 to 9+ for signal strength in s-units. It is said that while a 2/1 signal provides partially usable comms, the lowest "reliable" communications happens at a 3/2 (or 32) and the best is a 5/9+ (often called 599, 59+20, 59+40).
With that in mind, you have to quadruple your power to impact a receiver 1 s-unit. So, if the other party is receiving a signal at 1/2 s-unit while you are using 4 watts, you need 16 watts to go to 1 s-unit. You then need to jump to 64 watts for 2 s-units. Finally a third jump in power of 256 watts to get to 3 s-units and possibly getting a reliable communications signal (a 2/3 or 3/3). Depending on the modulation of the carrier signal and bandwidth, you may need to jump to 4 s-units, requiring well over 1,000 watts.
Now, lets say the same receive condition exists, but now you are already using 20 watts for that 1/2 s-unit. Now your power jumps are 80 watts, 320 watts, 1,280 watts for 3 s-units and possibly needing 5,120 watts for 4 s-units. Well, the first bump you made already seriously violates power restrictions in GMRS.
AND, this is under hypothetical perfect conditions, assuming nothing else changed in the environment. Which almost never exists.
Chasing better performance by boosting power typically doesn't give you any truly desirable results. The top 3 items that will help improve comms in almost every band is elevation, elevation, and elevation. From there its antenna tuning (and beams) filters to reduce interference and lowering the noise floor, as some examples.
So, for our technically skill folks... Would anyone like to contribute some general advice for new users to benefit from?
General advice on what to do or not to do?
Link to comment
Share on other sites
39 answers to this question
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.